

Main-Group Chemistry

DOI: 10.1002/anie.201209578

Detection of the Elusive Highly Charged Zintl Ions Si₄⁴⁻ and Sn₄⁴⁻ in Liquid Ammonia by NMR Spectroscopy

Maria Neumeier, Franziska Fendt, Stefanie Gärtner, Carina Koch, Tobias Gärtner, Nikolaus Korber,* and Ruth M. Gschwind*

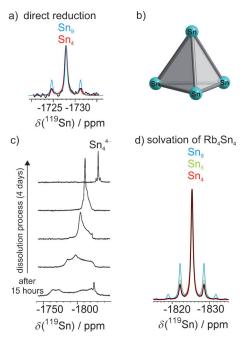
The appeal of Zintl anions originates from the fact that they are molecular building blocks of main-group elements that may be manipulated in solution. Apart from their intrinsic significance for the chemistry of the elements, they are promising starting materials for the development of new hybride materials containing transition metals and maingroup elements.^[1] The solution chemistry of the bare clusters also offers the possibility to find new elemental modifications by oxidative coupling, as was shown for germanium, or to create potential semiconducting amorphous or crystalline films by anodical deposition. [2,3] The dominant characterization method for nearly all of the reported compounds and materials has so far been single-crystal X-ray structure analysis. In contrast, much less is known about the species that actually occur in solution. To better understand the complicated processes which take place when Zintl anions react with reagents, the behavior of the bare polyanions in pure solutions must first be investigated. The long-range goal of these investigations would be a better understanding of Zintl anion solutions, thus facilitating an increasingly rational approach to their use in chemical transformations.

Solutions of Group 15 polyanions were studied intensely by Baudler et al.; [4] in contrast, a systematic investigation of ligand-free Group 14 polyanions in solution is still absent. Furthermore, highly reduced clusters, such as Sn₄⁴⁻ and Pb₄⁴⁻, have never been detected in solution, and the observation of any silicides at all remains elusive. Therefore, our studies focused on the characterization of highly reduced homoatomic Group 14 polyanions in solution by using NMR spectroscopy. In previous ¹¹⁹Sn NMR studies, Rudolph et al. reported the detection of Sn₉⁴⁻. They documented a further upfield shifted signal, which was tentatively assigned to Sn₄²⁻.[5-7] Moreover, Eichhorn et al. recently demonstrated the influence of [2.2.2]cryptand on $\mathrm{Sn_9}^{4-}$ species in solution. Their ¹¹⁹Sn NMR studies showed that a stoichiometric excess (4.5 equivalents) of cryptand led to HSn_9^{3-} along with several different K⁺-coordinated species $K_x Sn_9^{(4-x)-}$ (x = 0-3). [8] More highly reduced clusters, such as $\operatorname{Sn_4^{4-}}$ and $\operatorname{Pb_4^{4-}}$, have until now only been shown to exist in solution by the circumstantial evidence of solvate crystal structures, which were obtained from direct reduction experiments in liquid ammonia. [9] For the lighter homologues Si and Ge, the only known analoguous solvate crystal structure is a functionalized tetrahedral silicide.[10] An alternative route to access these E₄⁴⁻ clusters (E = Group 14 element) would be the dissolution of the precursor phases A₄E₄ (A = alkali metal), but they were presumed to be completely insoluble for the lighter congeners (E = Si, Ge, Sn).^[1] Indeed, there has not been any report on an NMR signal of a bare homoatomic polyanion of silicon in solution to date. The only ²⁹Si signal for a negatively charged silicon cluster in solution stems from the R₃Si₄⁻ anion, where $R = SiMe[CH(SiMe_3)_2]_2$, which was studied in toluene by Sekiguchi et al.^[11] However, starting from the binary phases A₁₂Si₁₇ with one Si₉⁴⁻ and two Si₄⁴⁻ anions per formula unit (A = K, Rb), Sevov et al. were able to show that silicides may be dissolved in liquid ammonia to yield the oxidized polyanions Si₉³⁻, Si₉²⁻, and Si₅²⁻ in cryptand-containing solvate compounds.^[12,13] In previous recrystallization experiments of a solid starting material with the nominal composition K₆Rb₆Si₁₇ in liquid ammonia, we were also able to indirectly find evidence for the existence of unoxidized Si₉⁴ in solution, [14,15] and we also used this ternary material to form the complex ion $[{Ni(CO)_2}_2(\mu-Si_9)_2]^{8-.[16]}$ Fässler et al. also succeeded in the synthesis of a functionalized silicide, $[(MesCu)_2(\eta^3-Si_4)]^{4-}$ $(Mes=2,4,6-Me_3C_6H_2)$, which contains Si₄ tetrahedra bonded to copper, in liquid ammonia from a similar starting material.^[10] Considering these results, the question if and which silicide species may be detected in solution became urgent.

Herein we present the first NMR signal of a bare silicide in solution. To our knowledge, the detected Si₄⁴⁻ signal is the most upfield-shifted ²⁹Si signal of a tricoordinated Si atom in a molecular environment without the involvement of any transition-metal complex. Therefore, the upfield limit of the NMR scale of measured ²⁹Si signals is now extended from $-274.2 \text{ ppm}^{[17]}$ to -323 ppm. Furthermore, we provide the first experimental evidence that Rb₄Sn₄ is soluble in liquid ammonia and that $\operatorname{Sn_4}^{4-}$ can be stabilized in solution in the presence of [2.2.2] cryptand. We also observe the oxidation of Sn_4^{4-} to Sn_9^{4-} in these solutions and, based on the detection of NH2-, unambiguously identify the oxidizing agent as being protons. This knowledge about solution processes of Group 14 polyanions might provide the possibility of rational syntheses of functionalized Zintl clusters and opens an approach to material design.

For the study of the highly charged $\operatorname{Sn_4}^{4-}$ and $\operatorname{Si_4}^{4-}$ clusters in solution, we selected the stannide system as a starting point.

F. Fendt, Dr. S. Gärtner, Prof. Dr. N. Korber Institut für Anorganische Chemie, Universität Regensburg 93040 Regensburg (Germany) E-mail: nikolaus.korber@ur.de


Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201209578.

^[*] Dr. M. Neumeier, C. Koch, Dr. T. Gärtner, Prof. Dr. R. M. Gschwind Institut für Organische Chemie, Universität Regensburg 93040 Regensburg (Germany) E-mail: ruth.gschwind@ur.de

With respect to the detection of stannides, a convenient NMR approach has already been established, in which $^{119}\mathrm{Sn}$ is observed and the $^{117}\mathrm{Sn}$ satellite pattern is used for the assignment of the cluster sizes Sn_x (for details, see the Supporting Information). Furthermore, stannides provide higher stability towards moisture and oxidation processes as well as better solubility than the highly sensitive silicides. For the synthesis, we chose the direct reduction of elemental tin with elemental rubidium (1:1) in liquid ammonia, because this additive-free preparation method minimizes external influences on the properties and the preferred cluster sizes and it allowed the crystallization of the solvates $A_4\mathrm{Sn}_4\text{-}2\,\mathrm{NH}_3$ (A = Rb, Cs) in previous studies. Furthermore, accordingly the standard stand

With this setup, a small 119 Sn signal at -1727 ppm with a coupling constant of 1466 Hz and a 117 Sn satellite pattern of 0.13:1.00:0.12 was observed (Figure 1 a), despite the fact that

Figure 1. $\rm Sn_4^{4-}$ in liquid ammonia: a) experimental (black) and simulated (colored) ¹¹⁹Sn spectra of $\rm Sn_4^{4-}$ (195 K, 224 MHz) resulting from direct reduction; b) $\rm Sn_4^{4-}$ cluster present in $\rm Rb_4Sn_4$; c) ¹¹⁹Sn spectra showing the dissolution process of $\rm Rb_4Sn_4$ in the presence of [2.2.2]cryptand (233 K, 224 MHz); d) assignment to $\rm Sn_4^{4-}$ based on simulations of the ¹¹⁷Sn satellite pattern.

the solubility of $\rm Sn_4^{4-}$ is expected to be very limited. In additive-free crystal structures, exclusively $\rm Sn_9^{4-}$ and $\rm Sn_4^{4-}$ have been observed; $\rm ^{[1]}$ for $\rm A_4Sn_9$ clusters (A = alkali metals), the chemical shift range as well as the scalar coupling constants in ethylenediamine (en) are well-known (-1115–1241 ppm; 256–293 Hz). $\rm ^{[7]}$ The upfield shift of the detected $\rm ^{119}Sn$ signal at -1727 ppm indicates a higher negative charge per Sn atom than $\rm Sn_9^{4-}$, and the large coupling constant of 1466 Hz hints at a smaller cluster size. Both parameters and also the $\rm ^{117}Sn$ satellite pattern are in accordance with the assignment to $\rm Sn_4^{4-}$, but owing to the limited signal-to-noise ratio (S/N) in the experiment with the sample prepared by direct reduction, slightly larger or smaller stannide clusters

with five or three Sn atoms cannot be unambiguously excluded. Therefore, the solubility improving and stabilizing effect of [2.2.2]cryptand^[18,19] was used for dissolution experiments on Rb₄Sn₄ in liquid ammonia. Prior to dissolution, solid Rb₄Sn₄ was characterized by Raman spectroscopy and X-ray diffraction (see the Supporting Information), which confirmed the presence of Sn₄⁴⁻ as the exclusive anionic moiety (Figure 1b). Despite the fact that Rb₄Sn₄ has been assumed to be insoluble, [1] a broad signal covering 21 000 Hz appeared in the ¹¹⁹Sn spectrum after 7.5 h of dissolution and 7.5 h of acquisition and sharpened within 4 days to a signal at -1825 ppm, which shows a surprisingly high S/N of 196 (Figure 1c). This allowed the unambiguous assignment to Sn₄⁴⁻ by simulation of the experimental ¹¹⁷Sn satellite pattern (0.133:1.000:0.132; see Figure 1 d) and shows a coupling constant (1423 Hz) that is similar to the direct reduction. The signal of Sn_4^{4-} in the presence of [2.2.2] cryptand is significantly shifted upfield compared to the additive-free direct reduction sample ($\Delta \delta = -98$ ppm). This is in agreement with previous reports about the effect of different counterions or [2.2.2] cryptand on the chemical shift of Sn_9^{4-} , where the degree of ion dissociation or sequestration correlates with upfield shifts.^[7,8] The larger absolute upfield shift for Sn₄⁴⁻ compared to Sn₉⁴⁻ is in accordance with the higher negative charge per Sn atom. In contrast, in dissolution experiments on Rb₄Sn₄ without [2.2.2]cryptand, exclusively Sn₉⁴⁻ was detected (-1248 ppm, J = 263 Hz). Interestingly, the intensity of this signal grew over time and simultaneously the signal of NH₂ appeared in the proton spectrum (see the Supporting Information). This is to our knowledge the first experimental evidence for the long standing suggestion that protons of ammonia or other solvents act as the oxidizing agent in the oxidation of $\operatorname{Sn_4^{4-}}$ to $\operatorname{Sn_9^{4-}}$. Thus, direct reduction experiments of elemental tin with elemental rubidium (1:1) in combination with dissolution experiments of Rb₄Sn₄ with and without [2.2.2] cryptand not only allowed the first detection and the assignment of the highly charged cluster Sn₄⁴⁻ but also for the identification of ammonia as the potential oxidizing agent.

Next, we focused on the detection of bare silicides in solution. To date, there is only circumstantial evidence for dissolved silicide clusters, but direct observation by ²⁹Si NMR has remained elusive. The only known NMR signals of silicides have been reported in solid-state MAS-NMR studies of the binary phases ASi (A = alkali metal). Progressing from Cs to Na, an upfield trend of the signals is observed, in accordance with a reduced electron transfer between cluster anion and counterion. [20,21] For Rb and K it was even possible to resolve the two crystallographic sites, which resulted in separated NMR signals for each phase (Rb -290, -305 ppm; K -320, -340 ppm). Given the tremendous intensity enhancement of Sn₄⁴⁻ in the dissolution experiments with [2.2.2] cryptand compared to the direct reduction, the cryptand-aided dissolution method was also chosen for the detection of silicides. Based on our experience with recrystallization experiments^[14,15] and conversion^[16] of silicides, a solid with the nominal composition K₆Rb₆Si₁₇ was used as the starting material. The $A_{12}Si_{17}$ phases (A = alkali metal) are the only silicides with known solubility. To facilitate the NMR detection in solution, ²⁹Si isotope labeling was applied. For K₆Rb₆Si₁₇, an enrichment of 20 % ²⁹Si was chosen as a compromise between absolute signal enhancement and intensity reduction owing to ²⁹Si-²⁹Si scalar couplings that would be expected for example for Si₉⁴⁻. Prior to the solvation experiments, the characterization of the mixed cationic solid K₆Rb₆Si₁₇ by Raman spectroscopy showed the presence of both Si₄⁴⁻ and Si₉⁴⁻ clusters precast in the solid state (see Figure 2a and the Supporting Information). Deviating from

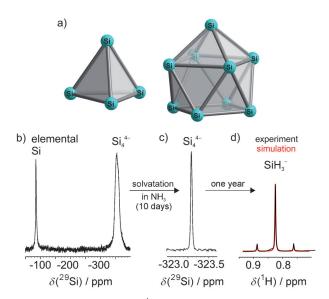


Figure 2. NMR detection of Si_4^{4-} in the solid state and in solution along with identification of the degradation product SiH₃⁻: a) Si₄⁴ clusters present in K6Rb6Si17; b) 29Si MAS-NMR spectrum of $K_6 R b_6 S i_{17}$ with 20% $^{29} S i$ labeling at RT; c) $^{29} S i$ NMR spectrum after dissolution of the 20% ²⁹Si labeled K₆Rb₆Si₁₇ in the presence of [2.2.2]cryptand in liquid ammonia (195 K, 119 MHz); d) ¹H NMR spectrum (195 K, 600 MHz) after dissolution of the 20% ²⁹Si-labeled $K_6Rb_6Si_{17}$ without [2.2.2]cryptand in liquid NH_3 and one year storage at 195 K including the simulation (red) of SiH₃⁻.

that, the X-ray powder diffraction pattern showed only the presence of the binary Si₄⁴⁻-containing phase Rb₄Si₄ (see the Supporting Information), which was attributed to the poor crystallinity and the plural phase character of the solid starting material. In the solid-state MAS-NMR of K₆Rb₆Si₁₇, only elemental Si and a broad signal at −311 ppm was observed (Figure 2b), which is exactly between the known chemical shifts of Rb₄Si₄ and K₄Si₄.^[20,21] Again no signal for Si₉⁴⁻ was detected, which is probably due to line-broadening effects caused by scalar coupling and the poor crystallinity of the material, which also prohibited its detection in the X-ray powder diffraction pattern. Next, K₆Rb₆Si₁₇ was dissolved in the presence of cryptand in liquid ammonia, and the first ²⁹Si spectrum of the sample was started after 19 h. Unexpectedly, after 4.5 h of acquisition time and without further optimization of the NMR parameters, an extremely broad signal covering 180 Hz appeared in the ²⁹Si NMR spectrum, which sharpened within 11 days to a signal at -323 ppm with an extremely high signal to noise ratio of 80 (see Figure 2c and the Supporting Information). Therefore, this signal was assigned to a specific silicide cluster. ²⁹Si is the only NMR- active silicon isotope, and thus only the chemical shift can be used to differentiate between Si₄⁴⁻ and Si₉⁴⁻, which are both present in the starting material. The ²⁹Si signal detected in solution has an only slightly upfield shift (-323 ppm) compared to the solid-state MAS-NMR signal of Si₄⁴⁻ in $K_6Rb_6Si_{17}$ at -311 ppm. For Si_9^{4-} , no MAS-NMR signal has been reported, and thus the exact chemical shift range is unknown. However, from the trends observed for the stannides, a lower charge per atom shifts the signal considerably downfield ($\operatorname{Sn_4^{4-}}$ –1727 ppm; $\operatorname{Sn_9^{4-}}$ –1248 ppm). Thus, the signal of Si₉⁴⁻ is expected to be in between the solid state signal of Si₄⁴⁻ and elemental Si. The chemical shift reported for $R_3Si_4^-$ in solution ($\delta = -153.6 \text{ ppm}$; R = SiMe[CH-(SiMe₃)₂)₂] corroborates this trend.^[11] Furthermore, theoretical calculations suggest a higher rigidity for Si₉⁴⁻ than for $Sn_9^{4-,[15]}$ which would result in three separated signals for Si_9^{4-} (Figure 2a).

This fact and all of the chemical shift trends for known silicides and stannides corroborate the assignment to Si₄⁴-. Next, the slight upfield shift between Si₄⁴⁻ in solution and in the MAS-NMR spectrum is addressed. As discussed above for stannides, the dissociation of cations from Zintl anions induces upfield shifts. For the highly charged $\operatorname{Sn_4}^{4-}$ signal without and with cryptand separating the cations from the clusters, an upfield shift of $\Delta \delta = -98$ ppm is observed (see above). For ²⁹Si, the absolute chemical shift range is significantly smaller. Thus, the upfield shift of Si_4^{4-} in solution by only 12 ppm with respect to the MAS-NMR signal fits to the ion sequestration during the dissolution process. Beyond that, Si₄⁴ was observed to be surprisingly stable in the presence of [2.2.2] cryptand. Even in a sample of K₆Rb₆Si₁₇, which was stored at 195 K for one further month and measured at an elevated temperature of 233 K, the Si₄⁴signal was detected in 87% of the maximal intensity observed after 11 days at 195 K (see the Supporting Information). After an extended storage (one year) of K₆Rb₆Si₁₇ in liquid ammonia without [2.2.2]cryptand, a variety of degradation products was observed in the proton spectrum (see the Supporting Information). Among these, the signal at 0.83 ppm with a ${}^{1}J_{H,Si} = 75 \text{ Hz}$ could be identified as SiH₃⁻. The simulation considering the 20 % ²⁹Si labeling (Figure 2 d) and the coupling constant of the previously reported signal of KSiH₃ in benzene^[22] corroborate this assignment. Recently, Eichhorn et al. reported the protonated stannide HSn₉³⁻ in a reversible equilibrium with $\mathrm{Sn_9}^{4-}$ in the presence of [2.2.2]cryptand in ethylenediamine.^[8] For the less stable silicides without the stabilizing influence of [2.2.2]cryptand, the protonation is expected to be irreversible, resulting in the formation of SiH₃⁻ as final degradation product.

In summary, the detection of silicides in solution, which has been elusive for a long time, has been achieved for Si₄⁴-. Furthermore, the elusive first NMR observation of the highly charged stannide Sn₄⁴⁻ is reported. Amazingly high signal intensities and stabilities were observed for both highly charged Zintl anions, Si₄⁴⁻ and Sn₄⁴⁻, by utilizing the stabilizing effect of [2.2.2]cryptand, and in the case of Si₄⁴⁻ the enhanced solubility of the mixed cationic starting material K₆Rb₆Si₁₇. Furthermore, by observing the generation of NH₂⁻, the first experimental evidence for the longstanding

assumption that solvent protons act as oxidizing agent on Zintl anions is given, and in case of silicides, ${\rm SiH_3}^-$ was detected as a degradation product.

Received: November 29, 2012 Published online: March 20, 2013

Keywords: NMR spectroscopy \cdot silicon \cdot solution processes \cdot tin \cdot Zintl ions

- [1] S. Scharfe, F. Kraus, S. Stegmaier, A. Schier, T. F. Fässler, Angew. Chem. 2011, 123, 3712 – 3754; Angewandte Chemie Int. Ed. 2011, 50, 3630 – 3670.
- [2] A. M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, Y. Grin, *Nature* 2006, 443, 320–323.
- [3] N. Chandrasekharan, S. C. Sevov, J. Electrochem. Soc. 2010, 157, C140 – C145.
- [4] M. Baudler, K. Glinka, Chem. Rev. 1993, 93, 1623-1667.
- [5] R. W. Rudolph, W. L. Wilson, R. C. Taylor, J. Am. Chem. Soc. 1981, 103, 2480 – 2481.
- [6] W. L. Wilson, R. W. Rudolph, L. L. Lohr, R. C. Taylor, P. Pyykko, *Inorg. Chem.* 1986, 25, 1535–1541.
- [7] R. W. Rudolph, W. L. Wilson, F. Parker, R. C. Taylor, D. C. Young, J. Am. Chem. Soc. 1978, 100, 4629 – 4630.
- [8] F. S. Kocak, D. O. Downing, P. Zavalij, Y.-F. Lam, A. N. Vedernikov, B. Eichhorn, J. Am. Chem. Soc. 2012, 134, 9733–9740
- [9] K. Wiesler, K. Brandl, A. Fleischmann, N. Korber, Z. Anorg. Allg. Chem. 2009, 635, 508-512.

- [10] M. Waibel, F. Kraus, S. Scharfe, B. Wahl, T. F. Fässler, Angew. Chem. 2010, 122, 6761–6765; Angew. Chem. Int. Ed. 2010, 49, 6611–6615.
- [11] M. Ichinohe, M. Toyoshima, R. Kinjo, A. Sekiguchi, J. Am. Chem. Soc. 2003, 125, 13328–13329.
- [12] J. M. Goicoechea, S. C. Sevov, *Inorg. Chem.* 2005, 44, 2654–2658.
- [13] J. M. Goicoechea, S. C. Sevov, J. Am. Chem. Soc. 2004, 126, 6860–6861.
- [14] S. Joseph, C. Suchentrunk, N. Korber, Z. Naturforsch. B 2010, 65, 1059–1065.
- [15] S. Joseph, C. Suchentrunk, F. Kraus, N. Korber, Eur. J. Inorg. Chem. 2009, 4641 – 4647.
- [16] S. Joseph, M. Hamberger, F. Mutzbauer, O. Härtl, M. Meier, N. Korber, *Angew. Chem.* 2009, 121, 8926–8929.
- [17] K. Abersfelder, A. J. P. White, R. J. F. Berger, H. S. Rzepa, D. Scheschkewitz, Angew. Chem. 2011, 123, 8082–8086; Angew. Chem. Int. Ed. 2011, 50, 7936–7939; D. Nied, R. Köppe, W. Klopper, H. Schnöckel, F. Breher, J. Am. Chem. Soc. 2010, 132, 10264–10265.
- [18] J. D. Corbett, P. A. Edwards, J. Chem. Soc. Chem. Commun. 1975, 984 – 985.
- [19] F. Teixidor, M. L. Luetkens, R. W. Rudolph, J. Am. Chem. Soc. 1983, 105, 149-150.
- [20] L. A. Stearns, J. Gryko, J. Diefenbacher, G. K. Ramachandran, P. F. McMillan, J. Solid State Chem. 2003, 173, 251–258.
- [21] T. Goebel, A. Ormeci, O. Pecher, F. Haarmann, Z. Anorg. Allg. Chem. 2012, 638, 1437 – 1445.
- [22] F. Fehér, M. Krancher, M. Fehér, Z. Anorg. Allg. Chem. 1991, 606, 7-16.